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We investigate the reflected field for few-cycle ultra-short laser pulses propagating through resonant media em-
bedded within wavelength-scale structures. Full-wave Maxwell–Bloch equations are solved numerically by using
the finite-difference time-domain method. The results show that the spectral feature of the reflected spectrum is
determined by the Bragg reflection condition, and that the periodic structure of a dense atomic system can be
regarded as a one-dimensional photonic crystal and even as a highly reflective multilayer film. Our study explains
the suppression of the frequency shifts in the reflected spectrum based on the Bragg reflection theory and pro-
vides a method to control the frequency and frequency intervals of the spectral spikes in the reflected spectrum.
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Rapid advances in nanofabrication techniques have given
rise to a rich variety of periodic nanostructures[1], which
provide an attractive way to control the light-matter in-
teraction and light propagation. Meanwhile, the resonant
interaction of quantum systems with a strong laser field
has been a permanent hot topic over the last decades[2–4].
This is because these studies laid the foundation for cur-
rent applications, such as the laser cooling of atoms[5],
quantum information processing[6], and high-efficiency
lasers[7]. Additionally, the study of the interaction between
laser and quantum systems, which can be described by
Maxwell–Bloch (MB) equations[8–17], has high methodo-
logical value. Thus, the phenomena and underlying
physics of a few-cycle pulse propagating through a
wavelength-scale periodic medium with resonant atoms
have become the focus of interest of recent studies. A mass
of questions has been addressed based on this theoretical
model, such as reshaping laser pulses and frequency-shift
control. With such a subwavelength structure, a single-
cycle gap soliton can be generated[18], even with a chirped
input laser pulse[19]. Song et al. replaced the atoms with an
asymmetrical medium to generate a unipolar half-cycle
pulse[17], which can be used to control and probe ultrafast
electronic dynamics. Xie et al. also proved that the red
shift in the reflected spectrum and the blue shift in the
transmitted spectra can be suppressed if a periodic struc-
ture is used[18]. Subsequent works show that the frequency
shifts obtained in the transmitted spectrum can be con-
trolled by changing the layer thickness[20]. Previous
works[17–20] have been focused on the transmitted pulse,
in terms of the pulse shaping and frequency-shift control-
ling. However, the reflected field, which can be ignored in a
diluted medium but is important for a dense medium, has
not been fully studied. In this Letter, we numerically in-
vestigate the reflected fields of few-cycle pulses through a

dense subwavelength periodic structure with resonant
atoms. The results show that the spectral spikes appear
in the reflected spectrum of the wavelength periodic struc-
ture, which actually acts as a one-dimensional photonic
crystal, and that the frequencies and frequency intervals
of the spectral spikes can be predicted by the Bragg reflec-
tion condition.

A few-cycle pulse propagates along the z-axis through a
one-dimensional periodic structure of thin layers consist-
ing of two-level atoms. The electric field is linearly polar-
ized along the x-axis. We numerically solve the full-wave
MB equations:

∂tHy ¼ −
1
μ0

∂zEx ;

∂tEx ¼ −
1
ε0

∂zHy −
1
ε0

∂tPx ;

∂tu ¼ −
1
T 2

u − ω0v;

∂tv ¼ −
1
T 2

u þ ω0v þ 2Ωw;

∂tw ¼ −
1
T 1

ðw − w0Þ− 2Ωw: (1)

Here, Hy, Px , μ0, and ε0 are the magnetic field, the macro-
scopic polarization, the permeability, and the permittivity
of free space, respectively. ω0 is the resonant frequency. T1

and T2 are the lifetime of the excited state and the
de-phasing time, respectively. The spatial modulation of
Pxðz; tÞ is given by:

Pxðz; tÞ ¼
�
Nduðz; tÞ z ∈ 2nδ; 2ðn þ 1Þδ�;

0 z ∈ 2ðn þ 1Þδ; 2ðn þ 2Þδ�; (2)

where N ¼ 1.1 × 1020 cm−3 is the medium density, d ¼
2 × 1029 A � s �m the dipole moment, and δ is the layer
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thickness. We define a collective frequency parameter,
ωc ¼ Nd2∕ϵ0ℏ ¼ 0.05 fs−1, to represent the coupling
strength between the medium and the field. The period
of the multiple-layer system is d ¼ a · na þ b· nb, where
a and b (na and nb) are the thicknesses (refractive index)
of the atomic and the air layer, respectively. The initial
electric field is defined as Ωðt ¼ 0; zÞ ¼ Ω0 cos½ωpðz − z0Þ∕
c�sech½1.76ðz − z0Þ∕cτp�, where Ω0 is the peak Rabi fre-
quency, ωp ¼ 5 fs is the FWHM, ωp ¼ 2.3 fs−1 is the car-
rier frequency, and z0 ¼ 26.25 μm used to avoid the initial
disturbance from the input pulse. The corresponding
envelope area is A ¼ Ω0τpπ∕1.76 ¼ 2π.
First, we model few-cycle pulse propagation through a

periodic structure with δ ¼ λ0∕2. The corresponding MB
equations can be solved by Yee’s finite-difference time-
domain discretization method for the electromagnetic
fields[21,22] and the predictor-corrector method for the
medium variables[9,23]. The results are shown in Fig. 1.
It can be seen that the reflected field consists of a leading
part and a long tail. The leading part corresponds to the
reflections from each layer, while the long tail corresponds
to the emission of the energy that resides in the medium
after the pulse leaves. The reflected spectrum in Fig. 1(b)
consists of two strong spikes located at ω ¼ 0.55ω0
and ω ¼ 1.45ω0, and weak spikes near the resonance fre-
quency. The respective Fourier transformations of the
leading part and the tail in Fig. 1(a) show that the two
strong spikes come from the interference of the reflections,
while the weak spikes come from the emission.
Next, we elaborate the formation of the interference

constructive spikes in the reflected spectrum. The consid-
ered periodic medium can be regarded as a one-dimension
photonic crystal with d ¼ a · na þ b· nb ¼ δðna þ 1Þ.
Any photon with a wavelength located in the photonic
band gaps ðkd ¼ mπ;m ¼ 1; 2; 3…Þ is forbidden to propa-
gate through the medium, thus forming the spectral spikes
in the reflected spectrum. The origin of the spectral spikes
can also be understood as a Bragg reflection, where a pho-
ton with a frequency that fulfills 2d ¼ mλðm ¼ 1; 2; 3…Þ is
totally reflected by the periodic medium. Thus, for a peri-
odic structure with δ ¼ λ0∕2, the spectral spikes are
expected to appear at ωm ¼mω0∕naðωmÞðnaðωmÞþ 1Þ
ðm ¼ 1;2;3…Þ, which is consistent with the spectral

features of Fig. 1(b). Specifically, two strong spikes
that appeared in Fig. 1(b) correspond to ω1 ¼
ω0∕naðω1Þðnaðω1Þ þ 1Þ and ω3 ¼ 3ω0∕naðω3Þðnaðω3Þþ 1Þ.
However, the resonance frequency component ω2 ¼
2ω0∕naðω2Þðnaðω2Þ þ 1Þ ≈ ω0 disappears in the reflected
spectrum due to the large absorption caused by the reso-
nance medium. The refractive index naðωÞ of this system
can be obtained as follows.

PðωÞ ¼ NduðωÞ ¼ ε0χðωÞEðωÞ, where PðωÞ and EðωÞ
are the complex amplitude of the polarization and electric
fields in the frequency domain, respectively. χðωÞðχðωÞ ¼
χLðωÞ þ χNLðωÞÞ characterizes both the linear and nonlin-
ear behaviors of the system considered[9]. The susceptibility

takes the form χðωÞ ¼ NduðωÞ
ε0EðωÞ ¼ ωc

uðωÞ
ΩðωÞ , and the refractive

index is nðωÞ ¼ Re
�������������������
1þ χðωÞp ¼ 1��

2
p ððð1þ χ 0Þ2 þ χ00Þ1∕2þ

ð1þ χ0ÞÞ1∕2. The real parts of the susceptibility and refrac-
tive index as functions of the frequency are shown in
Fig. 2(b). It can be seen that nðω0Þ ≈ 1, and that nðωÞ is
proportional to ω near the resonance frequency ω0, which
is the case of normal dispersion. Thus, nðωÞ < 1 for red de-
tuning and nðωÞ > 1 for blue detuning. The frequency of
the spectral spike on the red side of the reflected spectrum
satisfies ω1 ¼ ω0∕nðω1Þðnðω1Þ þ 1Þ > 0.5ω0, while on the
blue side, ω3 ¼ ω0∕nðω3Þðnðω3Þ þ 1Þ < 1.5ω0, which is
consistent with the reflected spectrum shown in Fig. 1(b).
Therefore, both the spectral spikes near 0.5ω0 and 1.5ω0

slightly shift towards ω0 due to the dispersion characteris-
tic of the medium.

For the resonance medium discussed above, the interac-
tion between laser and matter is strong, while for a large
detuning medium, the interaction weakens and fulfills the
condition of the weak excitation limit. Thus, if the reso-
nance medium is replaced by a large detuning medium,
the shifts of the spectral spike are expected to change

Fig. 1. (a) Reflected field and (b) spectrum of a pulse with
A ¼ 2π, τp ¼ 5 fs incident on a periodic structure with δ ¼ λ0∕2,
L ¼ 45 μm and ωc ¼ 0.05 fs−1. The dashed and dotted lines cor-
respond to the leading and tail parts of the reflected fields,
respectively.

Fig. 2. (a) Time evolution of ΩðtÞ and uðtÞ in a resonance
medium with ωp ¼ ω0. (b) The changing curves of χ0, χ00, and
n versus Δ in the case of (a). (c) Same as that for (b), but for
a detuning medium with ωp ¼ 2ω0. (d) The reflected spectrum
under the same parameters as (c). The other parameters are
same as those in Fig. 1.
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as a result of the variation of the medium dispersion char-
acteristic. For a detuning medium such as ωp ¼ 2ω0, the
change laws of χðωÞ0 and χðωÞ00 and nðωÞ versus ω go back
to the ordinary description of the dispersion characteristic
of the two-level atomic system in quantum optics, as
shown in Fig. 2(c). In ordinary quantum optics[2], under
the slowly varying envelope approximation and rotating-
wave approximation, the polarization takes the form

PðtÞ ¼ − Nd2
ℏ EðtÞ ρaaðtÞ−ρbbðtÞ

ðω0−ωÞ−iγ2
. In the limit of the weak

medium excitation ρaaðtÞ− ρbbðtÞ ¼ ρaað0Þ− ρbbð0Þ ¼ −1,
the polarization is simplified to PðtÞ ¼ ε0EðtÞ ωc

Δ−iγ2
, where

Δ denotes the detuning between the atomic resonance fre-
quency and the laser frequency, Δ ¼ ω0 − ω. Thus, the
susceptibility is χðωÞ ¼ ωc

Δ−iγ2
and the refractive index

nðωÞ ¼ Re
�������������������
1þ ωc

Δ−iγ2

q
. As shown in Fig. 2(c), both χðωÞ0

and nðωÞ are inversely proportional to ω near the reso-
nance frequency ω0, and are accompanied by strong ab-
sorption ðχðωÞ00 > 0Þ. This is the case of abnormal
dispersion. The reflected spectrum for the detuning
medium is shown in Fig. 2(d). It can be seen that the
interference spikes appear at 1.5ω0 and 2.5ω0, which
correspond to ω3 ¼ 3ω0∕naðω3Þðnaðω3Þ þ 1Þ and ω5 ¼
5ω0∕naðω5Þðnaðω5Þ þ 1Þ predicted by the interference
theory, respectively. The shift of the spike from 1.5ω0

in Fig. 1(b) vanishes in Fig. 2(d), since for the latter,
nðωmÞ ≈ 1ðm ¼ 3; 5Þ, as shown in Fig. 2(c). In addition,
the slight shift in Fig. 2(d) is away from ω0 because both
the spikes are on the blue side of the spectrum and nðωÞ <
1 for Δ < 0. Therefore, the location of the spike in the
reflected spectrum is determined by the dispersion charac-
teristic of the medium, which is affected by the detuning
between the carrier frequency of laser and the atomic
transition frequency.
We then turn to another spectral feature of the reflected

spectrum, the frequency intervals of the spectral spikes.
We further model the few-cycle pulse propagation through
various periodic structures with δ ¼ kλ0ðk ¼ 2; 1; 1∕4Þ.
The frequency intervals are labeled in the reflected spec-
tra, as shown in Fig. 3. According to the Bragg reflection
condition, the frequency interval Δω ≈ ω0∕2naðna þ 1Þk ≈
0.25ω0∕kðk ¼ 2; 1; 1∕4Þ. For example, when k ¼ 2, the
frequency interval is Δω ≈ 0.1ω0. The frequency interval
obtained from the numerical results in Fig. 3(a) is

Δω ≈ 0.1ω0, which is consistent with the prediction from
the above Bragg condition. Further demonstrations indi-
cate that the consistency remains for the cases of k ¼ 1
and 1∕4 (not shown here). Therefore, regarding the
few-cycle pulse propagation through a periodic atomic
medium, the frequency interval of the spikes in the re-
flected spectrum can be predicted by the Bragg reflection
condition. This holds true even if laser and medium
parameters change.

Figure 4 shows the reflected spectra for A ¼ 4π, ωc ¼
0.2 fs−1 and L ¼ 150 μm. When k > 1∕4, the spectra still
reserve the reflected field profile of a bulk medium. That is,
most of the energy is located on the red side around
ω ¼ 0.65ω0, as shown in Fig. 4(a). When k < 1∕4, the ma-
jor red shift is suppressed and a dominant blue shift spike
appears, as shown in Fig. 4(e). This is because with the
increase of the thickness of each layer, the periodic
medium gradually changes to a bulk medium. The rela-
tively small frequency interval ensures that the red shift
corresponding to the bulk reflection is visible. While with
the decrease of the thickness, the frequency interval in-
creases and fewer spikes appear in the reflected spectrum.
Only the spike near the center frequency and satisfying
Bragg condition is visible, which corresponds to the dom-
inant blue shift. When k ¼ 1∕4, both the red shift and blue
shift are largely suppressed due to Bragg condition. More-
over, from the numerical results shown in Figs. 4(a)–4(e),
the variance of the frequency interval Δω versus k can be
obtained. The result is shown in Fig. 4(f), which is consis-
tent with the prediction of the Bragg reflection condition
Δω ≈ 0.25ω0∕k. Note that, when it comes to few-cycle
pulse propagation through a periodic medium, the sup-
pression of the red shift in the reflected spectrum has been
attributed to the breakdown of the phase-matching con-
dition for intrapulse four-wave mixing[15]. However, based
on the above discussion, we conclude that the suppression
of the red shift can also be explained by the Bragg reflec-
tion theory.

Finally, we turn to the case where the optical thickness
of each layer is exactly the same, a · na ¼ b· nb ¼ δ. The
periodic medium is equal to a highly reflective multilayer
film. In this case, the frequency of the spectral spikes is
determined by the constructive interference condition,
2δþ λ∕2 ¼ mλðm ¼ 1; 2…Þ. For a periodic medium where
δ ¼ kλ0, ωm ¼ m∕4knaðm ¼ 1; 3; 5…Þ. The equality of

Fig. 3. A ¼ 2π, τp ¼ 5 fs, L ¼ 45 μm, ωc ¼ 0.05 fs−1. The reflected spectra of the periodic structures with δ ¼ kλ0ðk ¼ 2; 1; 1∕4Þ.
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each layer ensures that destructive interference occurs for
the photon with ωm ¼ m∕4knaðm ¼ 2; 4; 6…Þ. The fre-
quency interval in this case is Δω0 ¼ ω0∕2nak ≈ 0.5ω0∕k.
Compared with the ordinary periodic medium, the fre-
quency interval of the highly reflective film is doubled,
Δω0 ¼ 2Δω. Since the inequality of the optical thickness
of each layer ða · na ≠ b· nbÞ is responsible for the de-
crease of the frequency interval, the ordinary periodic
medium discussed above can turn into a highly reflective
film when the difference between a · na and b· nb disap-
pears. Specifically, the spectral spike located at ωm ¼
m∕4knaðm ¼ 2; 4; 6…Þ disappears and the frequency inter-
val changes from Δω to Δω0. To verify these claims, we
reduce the medium density to make sure the optical thick-
ness of atomic layer a · na gets closer to that of the air

layer, b. Take k ¼ 2 as an example, as shown in Fig. 5,
when the medium density decreases from ωc ¼ 0.05 fs−1

to ωc ¼ 0.01 fs−1, the amplitudes of the spectral spikes lo-
cated at 0.75ω0 and 1.2ω0 significantly decrease and the
frequency interval changes from 0.11ω0 to 0.24ω0.

In conclusion, we numerically study few-cycle pulse
propagation through a wavelength periodic structure con-
sisting of dense two-level atoms. The results show that the
medium acts as a one-dimensional photonic crystal and
the spectral features of the reflected spectrum can be pre-
dicted by the Bragg reflection theory. Spectral spikes
appear in the reflected spectrum. Its frequency depends
on the Bragg condition and changes with the medium
dispersion characteristic, which is determined by the
strength of the light-matter interaction. For a strong in-
teraction case, the spectral spikes on the blue side move
towards the resonance frequency ω0 as a consequence of
the normal dispersion near ω0. On the contrary, for a weak
interaction case, the spectral spikes move away from the
ω0 due to anomalous dispersion. Moreover, the frequency
interval of the spectral spikes is inversely proportional to
the thickness of each layer. For δ ¼ 2λ0, the reflected spec-
trum of the periodic medium still reserves the spectrum
profile of a bulk medium, which has a large red shift due
to intrapulse four-wave mixing. With the decrease of the
layer thickness, the major red shift is replaced by a blue
shift spike. Especially when δ ¼ λ0∕4, both the frequency
shifts are suppressed, which is consistent with the predic-
tion of the Bragg reflection condition. Moreover, the peri-
odic atomic medium can simulate a highly reflective film
when the optical thickness difference between each layer is
removed. Thus, our study in the reflected spectrum is
helpful in creating a complete picture for understanding
a few-cycle pulse’s propagation in a periodic quantum sys-
tem. It provides a reliable tool to control the frequency
and frequency intervals of the spectral spikes in the re-
flected spectrum, and lays the basis for simulating a pho-
tonic crystal and a highly reflective multi-layer film within
a two-level atomic system.
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